Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function
نویسندگان
چکیده
منابع مشابه
Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a.
The tumor suppressor p53 can trigger cell death independently of its transcriptional activity through subcellular translocation and activation of proapoptotic Bcl-2 family members. The regulation of such activity of endogenous p53 in response to stress remains largely unknown. Here we show that nuclear, activated FOXO3a could impair p53 transcriptional activity. However, activation of FOXO3a ei...
متن کاملThe oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX.
The HRX gene (also called MLL, ALL-1, and Htrx) at chromosome band 11q23 is associated with specific subsets of acute leukemias through translocations that result in its fusion with a variety of heterologous partners. Two of these partners, ENL and AF9, code for proteins that are highly similar to each other and as fusions with HRX induce myeloid leukemias in mice as demonstrated by retroviral ...
متن کاملSer Phosphorylation Regulates the Oncogenic Function of Mutant p53
Despite the wealth of information on the regulation of wild-type p53 function by phosphorylation, nothing is known about the biological effect of phosphorylation on mutant p53. Here we show that p53H175 is phosphorylated like wild-type p53 in cells of the same background. Ser nonphosphorylatable p53 mutants p53H175A392 and p53W248A392 more potently transformed rat embryo fibroblasts in cooperat...
متن کاملSer392 phosphorylation regulates the oncogenic function of mutant p53.
Despite the wealth of information on the regulation of wild-type p53 function by phosphorylation, nothing is known about the biological effect of phosphorylation on mutant p53. Here we show that p53H175 is phosphorylated like wild-type p53 in cells of the same background. Ser(392) nonphosphorylatable p53 mutants p53H175A392 and p53W248A392 more potently transformed rat embryo fibroblasts in coo...
متن کاملMYCN-directed centrosome amplification requires MDM2-mediated suppression of p53 activity in neuroblastoma cells.
The MYC family oncogenes cause transformation and tumor progression by corrupting multiple cellular pathways, altering cell cycle progression, apoptosis, and genomic instability. Several recent studies show that MYCC (c-Myc) expression alters DNA repair mechanisms, cell cycle checkpoints, and karyotypic stability, and this is likely partially due to alterations in centrosome replication control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The EMBO Journal
سال: 2002
ISSN: 1460-2075
DOI: 10.1093/emboj/cdf409